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Abstract: In this article, the notion of some new classes of multiplier ideal convergent fuzzy real-valued multiple sequence 
spaces having multiciplicity greater than two are introduced. The multiplier problem is characterized. Also we have made an 
effort to investigate some basic algebraic and topological properties of these introduced sequence spaces and investigate 
some inclusion results between these spaces. 
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Introduction 
The basic mathematical concept of a set was extended by the introduction of the fuzzy set theory. Fuzzy set theory is a 
powerful hand set for modeling, uncertainty and vagueness in various problems arising in the field of science and engineering 
such as cybernetics, artificial intelligence, expert system and fuzzy control, pattern recognition, operation research, decision 
making, image analysis, projectiles, probability theory, weather forecasting and so on. The concepts of fuzzy sets and fuzzy 
set operations were first introduced by Lofti A. Zadeh [33] in 1965 and after his pioneering work done on fuzzy set theory, a 
huge number of research papers have been appeared on fuzzy theory and its applications as well as fuzzy analogues of the 
classical theories. Several mathematicians have discussed various aspects of the theory and applications of fuzzy sets such as 
fuzzy topological spaces, similarity relations and fuzzy orderings, fuzzy measures of fuzzy events, fuzzy mathematical 
programming and so on. The theory of sequence of fuzzy numbers was first introduced by Matloka [12]. Matloka introduced 
bounded and convergent sequence of fuzzy numbers and showed that every convergent sequence of fuzzy numbers is 
bounded. Nanda [13] studied the sequences of fuzzy numbers and showed that the set of all convergent sequences of fuzzy 
numbers forms a complete metric space. The notion of statistical convergence is a very useful functional tool for studying the 
convergence problems of numerical problems through the concept of density. The concept of ideal convergence as a 
generalization of statistical convergence was initially introduced by Kostyrko et. al. [9]. More investigations in this direction 
and more applications of ideals are found in Šalát et al. [19-20], Kumar and Kumar [11], Tripathy and Tripathy [32], Das et. 
al. [2], Tripathy and Sen [31], Tripathy and Hazarika [28], Sen and  Roy [23], Khan and Khan [8], Raj and Gupta [16], Savas 
[23], Hazarika [7], Nath and Roy[14] and so on                                                                                                    Agnew [1] 
introduced the summability theory of multiple sequences and proved certain theorems for double sequences. At the initial 
stage, the different types of notions of triple sequences were introduced and investigated by Sahiner et. al. [17] and Sahiner 
and Tripathy [18]. In 2012, Savas and Esi [22] have introduced statistical convergence of triple sequences on probabilistic 
normed space. Esi [4] introduced statistical convergence of triple sequences in topological groups. Recently more works on 
triple sequences are done by Kumar et. al. [10], Dutta et. al. [3], Tripathy and Goswami [27], Nath and Roy [15] and many 
others. Using the notion of associated multiplier sequences, the scope for the studies on sequence spaces was extended by 
several authors in several directions. In 1970, Goes and Goes [6] studied the notion of multiplier sequences and defined the 
differentiated sequence space dE and integrated sequence space  E  for a given sequence space E, by using multiplier 

sequences  1k  and (k) respectively. Later on Tripathy and Sen [30], Tripathy and Mahanta [29] used a general multiplier 
sequence  k  of non-zero scalars for their studies on sequence spaces. Sen and Roy [24-25] used a general multiplier 
sequence  nk  of non-zero scalars on double sequence spaces. 
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Preliminaries and Background 
Throughout RN,  and C denote the sets of natural and real numbers respectively.A fuzzy number on R  is a function 

])1,0[(:  LRX  associating each real number Rt  having grade of membership ).(tX  We can express  every real 

number r as a fuzzy number r as        
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The -level set of a fuzzy number X , ,10   is defined and denoted as   
 

                                          }.)(:{][   tXRtX  
A fuzzy number X is said to be convex if )),(),(min()()()( rXsXrXsXtX  where rts   and X is called  normal if 
there exists Rt 0  such that .1)( 0 tX  If for each ,0 )),,0[1  aX  for all La  is open in the usual topology of ,R
then a fuzzy number X  is said to be upper semi-continuous. The set of all upper semi continuous, normal, convex fuzzy 
number is denoted by ),(LR whose additive and multiplicative identities are denoted by 0  and 1  respectively.If D denotes 
the set of all closed bounded intervals  RL XXX ,  on the real line R and if ), | Y-| , | -| (max     ),( RLRL YXXYXd   then ),( dD  
is a complete metric space. Also RLRLRd  )()(:  defined by , )][,]([sup),(
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  for )(, LRYX   is also a 

metric on ).(LR  A non-void class XI 2 (power set of a non-empty set X) is said to be an ideal if I satisfies  (i)
IBAIBA  , and  (ii) .     IBABandIA   

An ideal XI 2  is said to be non-trivial if I and .IX                                                                                               
A non-trivial ideal XI 2 is called admissible if I contains each finite subset of .X  A non-trivial ideal I is called maximal if 
there does not exist any non-trivial ideal IJ   containing I as a subset.  A non-empty family of sets XF 2 is said to be a 
filter on X  if  (i) F (ii) FBAFBAFBA  ,  and (iii) .     FBBAandFA                                                        
For any ideal I, there is a filter )(IF defined as }. \ : {)( IKNNKIF   Throughout the article, the ideals of NNN 2  will 

be denoted by 3I  and )( ),( ),(),( 03333
FFFF ccw   denote the spaces of all, bounded, convergent in Pringsheim’s sense and 

null in Pringsheim’s sense fuzzy real-valued triple sequences  respectively.                                             
A subset E of NNN   is said to have asymptotic density )(E  if 
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A triple sequence is a function ).(: CRNNNx                                                                                                                               
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of fuzzy numbers is a triple infinite array of fuzzy numbers )(  LRXijk   for all ., , Nkji        

A triple sequence ijkXX   of fuzzy numbers is said to be convergent in  Pringsheim’s sense to the fuzzy number X, if for 

every ,0 there exists  Nkkjjii  )(),(),( 000000   such that ,),( XXd ijk  for all ,0ii   ., 00 kkjj       
A triple sequence ijkXX 
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A canonical pre-image of a step space FE
K is a set of canonical pre- images of 

all elements in .
FE

K   

A triple sequence space FE of fuzzy numbers is said to be monotone if FE  contains the canonical pre-image of all its step 
spaces.                                                                                                                                                                                                                                                  
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A triple sequence space FE of fuzzy numbers is said to be symmetric if ,)(

F
ijk EX 

 whenever F
ijk EX   where   is a 

permutation on .NNN         
A triple sequence space FE  of fuzzy numbers is said  to  be  sequence   algebra  if  ,F

ijkijk EYX   whenever   

., F
ijkijk EYX                                                                     

                                                                                                                             
A triple sequence space FE of fuzzy numbers is said to be convergence free if F

ijk EY  whenever F
ijk EX   and 0nlkX  

implies  .0ijkY  

If ijk
 
is a triple sequence of non-zero scalars, then for a sequence space FE  of fuzzy numbers,, the multiplier 

sequence space )(FE  is defined as 
}.:{)( F

ijkijkijk
F EXXE    

A multiplier from a sequence space FD  into another sequence space FE  is a  real sequence ijkuu   such that 

,F
ijkijk EXuuX   whenever .F

ijk DXX  We denote the linear space of all such multipliers and bounded multipliers 

by )  , ( FF EDm  and )  ,( FF EDM  respectively. In fact ) ,( FF EDM ). ,(   )( 3
FFF EDm      

Let ijkX  and ijkY  be two triple sequences of fuzzy numbers. Then ijkijk YX   for almost all i, j and k relative to 3I (in short 

a.a. i, j & k r. 3I ) if  .}:),,{( 3IYXNNNkji ijkijk                                                                                                                               
The following well-known inequality will be used throughout the paper.                                                                                                    
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To prove some results in the paper, we will use the following Lemmas. 
Lemma 2.1 Every solid sequence space is monotone.  
Lemma 2.2 If a sequence space FE  of fuzzy numbers is bounded and normal, then ),( FF

ijk EEM  if and only if 
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is a multiplier sequence, ijkpp   is a triple sequence of bounded strictly positive numbers and ijkXX  is a 

sequence of fuzzy numbers, we introduce the following sequence spaces:    
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Main Results 

Theorem 3.1 The sequence spaces ), )(( )(
3 pm FI   and ), )(( )(

03 pm FI   are are closed under addition and multiplication 
operations. 

Proof. We shall prove the result for the space ), )(( )(
03 pm FI   and the other can be proved in a similar way.  
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If
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Hence  ijkX
 is I-convergent to Y  which implies ),)(( )(

3 pm FI   is complete. Using similar technique, we can prove the 
result for the other space.  ■ 

Theorem 3.4 The sequence space ), )(( )(
03 pm FI   is normal and monotone.  
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Proposition 3.6 The sequence spaces  ),)(( )(
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Proof. The result follows from the following example.  
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Proposition 3.7 The sequence spaces  ),)(( )(
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Proof.  The result follows from the following example. 
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Proposition 3.8 The sequence spaces  ),)(( )(
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03 pm FI   are not convergence free. 
Proof. From the following example, the result follows. 
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Conclusion 
For the development of any sequence space, convergence of that sequence space plays an important role. Ideal convergence 
is a generalization of the usual notation of convergence. In this article, we have introduced and studied some multiplier fuzzy 
real-valued ideal convergent triple sequence spaces. We have discussed some basic algebraic and topological properties of 
the introduced spaces. We hope that the results introduced in this article can be applied for further investigations from 
different aspects. 
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